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Grain boundary structure in incommensurate smectics: 
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Abstract. We consider a tilt grain-boundary with small angle O in an incommensurate smectic 
A,, liquid crystal with ordering wavenumbers q , ,  q2  and sample thickness h in the direction 
normal to the layers. For 9,Oh 4 1, a limit well within the reach of experiment, we find 
that the dislocation array which forms such a boundary has a spacing D - h''50-1'5. This 
prediction, which is qualitatively different from that obtained for periodic smectics by Nallet 
and Prost, should serve as a decisive test for the existence of phasons and hence for the truly 
incommensurate nature of these systems. 

Although the incommensurate smectic A phase (hereafter referred to as the A,,) was 
discovered by Ratna et a1 [ 11 in 1985, there have been, so far as we know, no experimental 
studies of its mechanical properties or low-energy excitations. We show here that an 
important signature of the quasiperiodic nature of this phase, a direct result of the 
existence [2] of an additional (phason) broken-symmetry mode, should be seen in the 
structure of small-angle grain-boundaries. This is a brief summary of the work; details 
can be found in [ 3 ] .  

The Ai, is a three-dimensional system whose time-averaged density field has two 
static, one-dimensional modulations in the z direction, with wavenumbers q1  and q2, 
where q1/q2  is irrational. More precisely, in the experiment of Ratna et a1 [l], the ratio 
varies continuously from 1 to 2 as a function of temperature, and is hence generically 
irrational. Writing the density field for the system as 

this means that spatially uniform changes in the individual layer displacement fields U 
and u2,  independently, cost no free-energy. However, the physics of distortions in which 
one set of layers moves relative to another ( u l  # u2)  is quite different from that in which 
the two move jointly (ul  = u2) .  It is evident, in particular, that joint rigid rotations of 
the two density waves (d,ul = dxu2 = constant) should cost no energy while relative 
rotations (d,ul # dxu2),  even when spatially uniform, should carry a bulk energy cost 
[2]. Defining [2] the joint, or phonon (U), and relative, or phason (w) displacement fields 
U = a[su1 + (1 - s)u2] and w = a-l(ul - u2) ,  for arbitrary real a and 0 < s < 1, it can 
be shown that the elastic free-energy for the Ai, is the sum of a normal smectic elastic 

0953-8984/90/SA0275 + 03 $03.50 @ 1990 IOP Publishing Ltd SA275 



SA276 S Ramaswamy and J Toner 

energy for the u-field and an 'xy'-like square-gradient energy (with a trivial anisotropy) 
for the w field: 

H = - 2 [ B ( ~ , u ) ~  + K(V;U)* + B , ( ~ , w ) ~  + C , ( V ~ W ) ~ ]  d3x. (2) 'I 
Fundamental dislocations in the A,, can be made [2] by introducing a single extra 

half-layer in one or  other of the two density waves. Compound dislocations can be made 
by combining these fundamental dislocations. A general dislocation in the A,, is thus 
characterized by a two-component vector ( b l ,  b,) = (mid,, mzd2), where d l  and dZ are 
the incommensurate periods, and ml ,  m2 (integers) are the numbers of extra half-layers 
inserted into density-waves 1 and 2. In terms of the u and w variables, we can define b, = 
cu[sb, + (1 - s)b2] and b, = a-'(bl - b2). The fundamental irrationality of f = d,/d, 
guarantees that b,v is never zero: in fact one can show [3] that for a generic irrational c, 
the smallest b, for a given b, is 

b;'" m d:/b,,. (3) 
Since 6 ,  is never zero, and since the energy-cost of w distortions is square-gradient, 

the interaction between a pair of straight edge dislocations in the A,, is utterly different 
[2] from that in a periodic smectic: the dominant interaction at large distances R in any 
direction is essentially proportional to A,b$ ln(R/a) where A ,  is an effective w elastic 
constant and a is a microscopic length of order of the layer spacing. Let us now see how 
these unique characteristics lead to the predictions made above, by constructing a 
dislocation model for a tilt grain-boundary with small-angle 8 in the Ale. 

As a first candidate for such a model, consider an array of identical, straight edge 
dislocation lines with Burgers vector (bu ,  b,) and spacing D = b,/8, lying parallel to the 
y axis in the x-y plane and dividing the sample into an upper and a lower grain. The 
usual description [4] of grain boundaries as dislocation arrays gives a rotation through 
an angle 8 of one grain with respect to the other, i.e. 1 du/dx 1 -+ x as 1 z 1 + x .  But the 
same argument applied to the w part of the Burgers vector implies that 
1 dw/dxi -+ x as Iz 1 -+ x ,  so that both grains suffer costly bulk w rotations. The array as 
constructed is not a grain boundary. 

The way out of this [5] is to build an array of length L of dislocations with mean 
spacing D ,  with total b, 0~ L and with the individual b,values roughly equal in magnitude 
but alternating quasiperiodically in sign in such a way that the total b, + 0 as the size 
L+ x .  As a result of equation (3), the best one can do is b, L- ' ,  which is sufficient. 
There is still an infinite number of ways of doing this, since only b,/D = 8 is fixed. We 
must find the grain boundary with the lowest energy for a given 8. In crystals, this 
requires dislocations with the smallest possible Burgers vector. In periodic smectics [6], 
as a result of the unusual nature of the core energy [7]. the dislocations in a grain 
boundary can lower the energy by clumping. We shall see next that this happens in the 
A,, as well, but that this is due, for qlOh < 1, to phasons. In this limit, the effects of [7] 
are negligible. 

To calculate the energy of a grain boundary in the A,, note first that since the 
dislocations are lying side-by-side, i.e. at the same z coordinate, the nature of the u 
elastic energy of a smectic ensures [8] that there is no contribution to their interaction 
energy from the u field. For q,h8 1, there are only two relevant pieces in the grain- 
boundary energy. We discuss each in turn. 

First, adjacent dislocations have, in general opposite b,, and hence attract. The 
contribution of more distant dislocations is screened, so that a good estimate of this 
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contribution per unit area of grain boundary, Ephason, is obtained by taking the typical w 
interaction energy per nearest neighbour pair, per unit length of dislocation line, and 
dividing by the spacing D. This gives 

Ephason OC Bw(bi/D> ln(h/a) (4a) 

Ephason cc Bw8(a4/b3,) 1n(hbu/a2)* (4b) 

which, putting in as small a bw as possible, from ( 3 ) ,  and using the fact that b,/D = 8,  
becomes 

Here Bw is a typical w elastic constant and a is a microscopic length of the order of the 
layer spacing. Note here that the logarithm is cut off by the sample thickness h rather 
than the spacing D as a result of the condition q,Bh < 1. Note also that (4b) favours large 
b, as a means of getting rid of unwanted energy stored in the w field. 

The other contribution to the energy per unit area is the ‘wedge energy’ [6], which 
arises because, in a thin sample, the parabolic regions of appreciable u-strain above and 
below each edge dislocation do not overlap, so that between dislocations, the layers are 
splayed apart. This local departure of the layer spacing from its preferred value costs an 
energy per unit area [6] 

Ewedge = Bbt/12h. ( 5 )  
This term competes with (4b) by favouring small bl,. Treating b, as a continuous variable 
(which can be justified [3]) and minimizing the total energy per unit area (4b) + ( 5 ) ,  we 
find the optimal values b* and D* for b, and D:  

b* = g ( 8 h / ~ ) ” ~ / a  = OD” (6) 
where the coefficientgvaries roughly as (In b*)1/5 and can therefore be treated essentially 
as a constant. It is straightforward to show [3] that the result is consistent with q18h @ 1. 

The condition q,Oh < 1 means that our results should show up only in the limit of 
very small angles, at least for thermotropic systems, which are the only ones where the 
A,, has been found. For such systems, in the classical wedge geometry [9] used to produce 
a grain boundary in smectics, assuming q, is of order 3 x lo-’ cm and a thickness h = 
0.1 mm, 8 should be about 0.05”. We are told [lo] that this, or an equivalent set-up in 
the geometry of [6] is feasible. A positive result in such an experiment would be the first 
confirmation of the existence of phasons in the Ale. A negative result would cast doubt 
on the incommensurate nature of the phase. 
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